tramvs - Optimal Subset Selection for Transformation Models
Greedy optimal subset selection for transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291> ) based on the abess algorithm (Zhu et al., 2020, <doi:10.1073/pnas.2014241117> ). Applicable to models from packages 'tram' and 'cotram'.
Last updated 2 days ago
5.15 score 5 scripts 185 downloadscomets - Covariance Measure Tests for Conditional Independence
Covariance measure tests for conditional independence testing against conditional covariance and nonlinear conditional mean alternatives. Contains versions of the generalised covariance measure test (Shah and Peters, 2020, <doi:10.1214/19-aos1857>) and projected covariance measure test (Lundborg et al., 2023, <doi:10.48550/arXiv.2211.02039>). Applications can be found in Kook and Lundborg (2024, <doi:10.1093/bib/bbae475>).
Last updated 7 hours ago
4.73 score 6 stars 2 scripts 212 downloadstramicp - Model-Based Causal Feature Selection for General Response Types
Extends invariant causal prediction (Peters et al., 2016, <doi:10.1111/rssb.12167>) to generalized linear and transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291>). The methodology is described in Kook et al. (2023, <doi:10.48550/arXiv.2309.12833>).
Last updated 4 months ago
4.18 score 6 stars 132 downloadsdeeptrafo - Fitting Deep Conditional Transformation Models
Allows for the specification of deep conditional transformation models (DCTMs) and ordinal neural network transformation models, as described in Baumann et al (2021) <doi:10.1007/978-3-030-86523-8_1> and Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as autoregressive DCTMs (Ruegamer et al, 2022, <doi:10.48550/arXiv.2110.08248>) and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>) are implemented.
Last updated 2 years ago
1.04 score 11 scripts 216 downloads